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ABSTRACT

We describe a pointerless representation of hierarchical regular simplicial meshes, based on a bisection approach
proposed by Maubach. We introduce a new labeling scheme, called an LPT code, which uniquely encodes each
simplex of the hierarchy. We present rules to compute the neighbors of a given simplex efficiently through the use
of these codes. In addition, we show how to traverse the associated tree and how to answer point location and
interpolation queries. Our system works in arbitrary dimensions.
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1. INTRODUCTION

Hierarchical simplicial meshes have been widely used
in various application areas such as finite element com-
putations, scientific visualization and geometric mod-
eling. There has been considerable amount of work in
simplicial mesh refinement, particularly in 2- and 3-
dimensions, and a number of different refinement tech-
niques have been proposed [1, 2, 3, 4, 5, 6, 7]. Because
of the need to handle data sets with temporal compo-
nents, there is a growing interest in higher dimensional
meshes. In this paper, we build on a bisection refine-
ment method proposed by Maubach [6].

A hierarchical mesh is said to be regular if the ver-
tices of the mesh are regularly distributed and the
process by which a cell is subdivided is identical for
all cells. Maubach developed a simple bisection al-
gorithm based on a particular ordering of vertices and
presented a mathematically rigorous analysis of the ge-
ometric structure of the hierarchical regular simplicial
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meshes in any dimension d [6]. The mesh is gener-
ated by a process of repeated bisection applied to a
hypercube that has been initially subdivided into d!
congruent simplices. The subdivision pattern repeats
itself on a smaller scale at every d levels. Whenever a
simplex is bisected, some of its neighboring simplices
may need to be bisected as well, in order to guarantee
that the entire subdivision is compatible. Intuitively, a
compatible subdivision is a subdivision in which pairs
of neighboring cells meet along a single common face.
A compatible simplicial subdivision is also referred to
as a simplicial complex [8].

In computer graphics, adaptively refined regular
meshes in 2- or 3-dimensions have been of interest
for their use in realistic surface and volume rendering
[9, 10]. In many such applications, efficiency of var-
ious operations such as traversal and neighbor find-
ing on the mesh is most desired. Based on the 3-
dimensional version of Maubach’s method, Hebert [11]
presented a more efficient symbolic implementation of
regular tetrahedral meshes by introducing an address-
ing scheme that allows unique labeling of the tetra-
hedra in the mesh, and he showed how to compute



the face neighbors of a tetrahedron based on its la-
bel. Hebert’s addressing scheme could be generalized
to higher dimensions, however the neighbor finding al-
gorithms are quite specific to 3-dimensions, and a gen-
eralization to higher dimensions is a definite challenge.
In this paper, we present such an algorithm that works
in arbitrary dimensions.

Our interest in higher dimensions is motivated by an-
other computer graphics application that accelerates
ray-tracing [12] through multi-dimensional interpola-
tion. In this application, rays in 3-space are modeled
as points in a 4-dimensional parameter space, and each
sample ray is traced through a scene to gather various
geometric attributes that are required to compute an
intensity value. Since tracing a ray through a complex
scene can be computationally intensive, our approach
is to instead sample a relatively small number of rays,
and then interpolate among these samples to recon-
struct the value at intermediate rays [13, 14]. An adap-
tively refined regular simplicial mesh is constructed
over the 4-dimensional domain of interest, and the field
values are sampled at the vertices of this subdivision.
For interpolation purposes, compatibly refined sim-
plicial meshes are preferable over octree subdivisions,
since they guarantee continuous interpolants, and that
they are much simpler in the sense that interpolations
are performed with a minimal number of samples.

In addition to our own motivation, higher dimensional
meshes are of interest for visualization of time-varying
fields, and efficient algorithms for performing traver-
sals and neighbor finding is required.

Thus, our main objective in this paper is to present an
efficient implementation of hierarchical regular simpli-
cial meshes in any dimension d. Rather than repre-
senting the hierarchy explicitly as a tree using child
pointers, we use a pointerless representation in which
we access nodes through an index called a location
code. Location codes [15, 16] have arisen as a popular
alternative to standard pointer-based representations,
because they separate the hierarchy from its represen-
tation, and so allow the application of very efficient
access methods. The space savings realized by not
having to store pointers (to the parent, two children,
and d + 1 neighboring simplices) and simplex vertices
is quite significant for large multidimensional meshes.

We present a location code, called the LPT code, which
can be used to access nodes of this tree. We store the
mesh in a data structure called a simplex decompo-
sition tree. Our hierarchical decomposition is based
on the same bisection method given by Maubach [6].
(Note that Maubach’s representation is not pointer-
less.) In addition to efficient computation of neigh-
bors, we show how to perform tree traversals, point
locations, and answer interpolation queries efficiently
through the use of these codes.

2. POINTERLESS REPRESENTATIONS
AND PRIOR WORK

Regular subdivisions have the disadvantage of limiting
the mesh’s ability to adapt to the variational struc-
ture of the scalar field, but they provide a number
of significant advantages from the perspectives of ef-
ficiency, practicality, and ease of use. These include
guarantees on geometric quality, relief from the need
to explicitly storing topological information, straight-
forward methods for performing point location and
other queries. One very practical advantage of regu-
larity involves performance issues arising from modern
memory hierarchies, which are based on multiple lev-
els ranging from registers and caches to main memory
and disk (including virtual memory). The storage ca-
pacity at each level increases, and so too does access
latency. There are often many orders of magnitude
of difference between the time needed to access local
data (which may be stored in registers or cache) versus
global data (which may reside on disk) [17]. Large dy-
namic pointer-based data structures are particularly
problematic from this perspective, because node stor-
age is typically allocated and deallocated dynamically
and, unless special care is taken, simple pointer-based
traversals suffer from a nonlocal pattern of memory
references. This is one of the principal motivating
factors behind I/O efficient algorithms [18] and cache
conscious data structures [17].

In contrast with pointer-based implementations, regu-
lar spatial subdivisions support pointerless implemen-
tations. Pointerless versions of quadtree and its vari-
ants have been known for many years [19, 15]. The
idea is to associate each node of the tree with a unique
index, called a location code. Because of the regular-
ity of the subdivision, given any point in space, it is
possible to compute the location code of the node of
a particular depth in the tree that contains this point.
This can be done entirely in local memory, without
accessing the data structure in global memory. Once
the location code is known, the actual node can be
accessed through a small number of accesses to global
memory (e.g., by hashing).

Prior work on pointerless regular simplicial meshes
has principally been in 2- and 3-dimensions. Lee and
Samet presented a pointerless hierarchical triangula-
tion based on a four-way decomposition of equilateral
triangles [16]. Hebert presented a location code for
longest-edge bisection hierarchical tetrahedral meshes
and a set of rules to compute neighbors efficiently in
3-space [11]. Lee, et al. developed an alternative lo-
cation code for this same tetrahedral mesh, and pre-
sented algorithms for efficient neighbor computation
[20]. Both approaches are quite specific to 3-space,
and are not readily generalizable to higher dimensions.

We introduce a new location code, which pro-



vides unique encoding of the simplices generated by
Maubach’s [6] bisection algorithm. Unlike Hebert’s
approach, which only works in 3-dimensional space
and relies on enumerations and look-up tables, our
approach is fully algorithmic and works in any dimen-
sion. All the geometry of the simplices and the opera-
tions on the tree can be computed easily based solely
on the code of a simplex. Our location code and the
definitions of various operations on the simplex tree
depend on the particular vertex ordering. We have
adopted a different ordering than Maubach’s system,
which we feel leads to simpler formulas. Our vertex or-
dering is a generalization of the vertex ordering used
in Hebert’s 3-dimensional system.

The most challenging operation on the tree is neighbor
computation. Maubach’s system computes the neigh-
bors of a simplex during construction of the tree re-
cursively [21], and stores pointers to neighbors for each
simplex. In contrast, we show how to compute an arbi-
trary neighbor of any simplex efficiently directly from
its code, without storing any neighbor links, and with-
out having to traverse the path to and from the root
in order to compute neighbors. This is significant gain
both in terms of storage, and computational efficiency,
since our approach is local and runs in O(d) time. In
fact it runs in O(1) time, if the operations are encoded
in lookup tables.

Our interest is in hierarchical regular meshes, however,
note that there is also significant interest in compact
representation of irregular simplicial meshes [22, 23].

3. PRELIMINARIES

Throughout, we consider real d-dimensional space, <d.
We assume that the domain of interest has been scaled
to lie within a unit reference hypercube of side length
2, centered at the origin, that is [−1, 1]d. We shall
denote points in <d using lower-case bold letters, and
represent them as d-element row vectors, that is, v =
(v1, v2, . . . , vd) = (vi)

d
i=1. We let ei denote the ith

unit vector. A d-simplex is represented as a (d + 1)×
d matrix whose rows are the vertices of the simplex,
numbered from 0 to d. Of particular interest is the base
simplex, denoted S∅, whose ith vertex is

∑i
j=1 ej −∑d

j=i+1 ej .

Permutations and Reflections: Let Sym(d) de-
note the symmetric group of all d! permutations over
{1, 2, . . . , d}. We denote a permutation Π ∈ Sym(d)
by a tuple of distinct integers [π1 π2 · · · πd], where
πi ∈ {1, 2, . . . , d}. We can interpret such a permuta-
tion as a linear function that maps the unit vector ei
to the eπi , or equivalently as a coordinate permuta-
tion given by a d× d matrix whose ith row is the unit

vector eπi . For example, for Π = [2 3 1], S∅Π =



−1 −1 −1

1 −1 −1
1 1 −1
1 1 1







0 1 0
0 0 1
1 0 0


 =



−1 −1 −1
−1 1 −1
−1 1 1

1 1 1


 .

It is well known that the collection of simplices {S∅Ψ :
Ψ ∈ Sym(d)} fully subdivides the reference hypercube,
and further that this subdivision is compatible [24].
These d! simplices form the starting point of our hi-
erarchical simplicial mesh. The composition of two
permutations Π ◦ Ψ, defined as S(Π ◦ Ψ) = (SΨ)Π is
given by the matrix product ΨΠ. Note that the nota-
tion [2 3 1] is not a vector in <d, but merely a conve-
nient shorthand for a permutation matrix. Through-
out, vectors will be denoted with parentheses, and
square brackets will be used for objects that are to be
interpreted as linear transformations, or equivalently a
shorthand for a matrix. Another useful class of trans-
formations are coordinate reflections, which can be ex-
pressed as a d-tuple R = [r1 r2 · · · rd] where ri ∈
{±1}, and is interpreted as a linear transformation
represented by the diagonal matrix diag(r1, r2, . . . , rd).

It will simplify notation to combine the composition
of a permutation and a reflection using a unified nota-
tion. We define a signed permutation to be a d-tuple of
integers [riπi]

d
i=1, where [πi]

d
i=1 is a permutation and

[ri]
d
i=1 is a reflection. This is interpreted as a linear

transformation that maps the ith unit vector to rieπi .
For example, in <3, the composition of the reflection
R = [−1 −1 +1] and the permutation Π = [2 3 1]
is expressed as the signed permutation [−2 −3 +1],
which is just a shorthand for the matrix product RΠ,
that is RΠ =



−1 0 0

0 −1 0
0 0 +1







0 1 0
0 0 1
1 0 0


 =




0 −1 0
0 0 −1

+1 0 0


 .

The Simplex Decomposition Tree: Recall that
the initial simplicial complex is formed from the d!
permutations of the base simplex, that is, S∅Ψ for
Ψ ∈ Sym(d). Simplices are then refined by a process
of repeated subdivision, called bisection [6]. (Details
will be given below.) The resulting child simplices are
labeled 0 and 1. By applying the process repeatedly,
each simplex in this hierarchy is uniquely identified
by its path, which is a string over {0, 1}. The result-
ing collection of trees is called the simplex decomposi-
tion tree. It consists of d! separate binary trees, which
conceptually are joined under a common super-root.
Each simplex of this tree is uniquely identified by a
permutation-path pair as SΨ,p, where Ψ is the initial
permutation of the base simplex, and p ∈ {0, 1}∗ is the
path string. When starting with the base simplex (Ψ



is the identity permutation) we may omit explicit ref-
erence to Ψ. By symmetry, it suffices to describe the
bisection process on just the base simplex S∅. The or-
dering of the rows, that is, the numbering of vertices,
is significant.

Maubach [6] showed that with every d consecutive bi-
sections, the resulting simplices are similar copies of
their d-fold grandparent, subject to a uniform scaling
by 1/2. Thus, the pattern of decomposition repeats
every d levels in the decomposition. Define the level,
`, of a simplex Sp to be the path length modulo the
dimension, that is, ` = (|p| mod d), where |p| denotes
the length of p. The 0-child Sp0 and 1-child Sp1 of a
simplex are computed as follows:

Sp =




v0

. . .
v`−1

v`
v`+1

. . .
vd




Sp0 =




v0

. . .
v`−1
v`+vd

2

v`+1

. . .
vd




Sp1 =




v0

. . .
v`−1
v`+vd

2

v`
. . .

vd−1




A portion of the tree is illustrated in Fig. 1.
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Figure 1: The simplex decomposition tree. The cor-
responding bisected simplex is shown on top left. The
newly created vertex is indicated by an arrow in each
case. The reference simplices ∆i are indicated as well.

Reference Simplices and the Reference Tree:
Since with every d consecutive bisections, the simplices
are similar to, but half the size, of their d-fold grand-
parent, we can partition the nodes of the decomposi-
tion tree into a collection of isomorphic, disjoint sub-

trees of height d. The roots of these subtrees are the
nodes whose depths are multiples of d (where the root
starts at depth 0). It suffices to analyze the struc-
ture of just one of these trees, in particular, the sub-
tree of height d starting at the root. We call this the
reference tree. Since the two children of any simplex
are congruent, it follows that all the simplices at any
given depth of the decomposition tree are congruent
to each other. Thus, all the similarity classes are rep-
resented by d canonical simplices, called the reference
simplices. These are defined to be S(0k), for 0 ≤ k < d,
and denoted by ∆k. (See Fig. 1.) Although it is not a
reference simplex, we also define ∆d = S(0d), since it
is useful in our proofs.

4. THE LPT code

So far we have defined an infinite decomposition tree
and a procedure for generating the simplices of this
tree top down. In order to provide pointerless imple-
mentation of the hierarchical mesh, we define a loca-
tion code, which uniquely encodes each simplex of the
hierarchy. The most direct location code is combina-
tion consisting of the initial permutation Ψ followed
by the binary encoding of the tree path p. Unfortu-
nately, it is not easy to compute basic properties of the
simplex such as neighbors from this code. Instead we
modify an approach presented by Hebert [11] for the
3-dimensional case, by defining a location code that
more directly encodes the geometric relationship be-
tween each simplex and the reference simplex at the
same level. We call this the LPT code, since it encodes
for each simplex its Level, its signed Permutation, and
its Translation relative to some reference simplex.

Given any simplex SΨ,p in the hierarchy, the LPT code
is a 3-tuple (`, Π, Φ), where ` = |p| mod d is the sim-
plex’s level, Π is a signed permutation relating SΨ,p to
its reference simplex, and Φ is a list of vectors, called
the orthant list, which is used to derive the translation
relative to the reference simplex. The permutation
part Π = ΠΨ,p and orthant list Φ = ΦΨ,p are defined
below as functions of Ψ and p. Correctness will be
established in Theorem 4.1 below.

Permutation Part: The signed permutation ΠΨ,p

is defined recursively as follows for a base permutation
Ψ and binary path p:

ΠΨ,∅ = Ψ ΠΨ,p0 = ΠΨ,p ΠΨ,p1 = ΠΨ,p◦Σ`, (1)

where Σ` is the permutation that cyclically shifts
the last d − ` elements to the right and negates the
element that is wrapped around. That is, Σ` =
[1 2 · · · ` (−d) (` + 1) (` + 2) · · · (d− 1)]. A portion
of the simplex decomposition tree, and the associated
permutation values are shown in Fig. 2. For example,
observe that S1 is related to ∆1 by the signed permu-
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Figure 2: The signed permutations ΠΨ,p associated with each simplex are shown below each simplex matrix,
and the entries of the orthant list are shown for the shaded simplex S0101. The LPT code for this simplex is
(0, [+1 +2], 〈(+1,−1), (+1, +1)〉).

tation [−2 +1], which negates the first column of ∆1

and then swaps the two columns.

Orthant List: Recall that with every d levels of
descent in the decomposition tree, the resulting sim-
plices decrease in size by a factor of 1/2. The bounding
hypercube of the resulting descendent is one of the 2d

hypercubes that would result from a quadtree-like de-
composition (indicated by broken lines on the left side
of Fig. 2). Depending on the level within the tree, the
translation of the descendent hypercube relative to its
ancestor will be some power of (1/2) times a d-vector
over {±1}. Such a vector defines the orthant contain-
ing the descendent hypercube relative to the central
vertex of its ancestor. Consider the shaded simplex in
Fig. 2. Its translation relative to the base simplex is
1
2
(+1,−1)+ 1

4
(+1, +1), indicated by the arrowed lines.

The orthant list encodes these two vectors.

d

d

d

1

Q  =2

Q  =3

Q  =

q3

q2

q1

q1q2q3

q1

q1q2

To define the orthant list,
we first remove the last
` symbols of p, leaving a
multiple of d symbols (pos-
sibly empty). We then par-
tition the remaining sym-
bols into L = b |p|/dc sub-
strings, q1q2 . . . qL, where
|qi| = d. Since the refer-
ence tree structure repeats

every d levels, each qi can be viewed as a complete
path in one of these subtrees of height d. Let Qi de-
note the concatenation of the first i substrings. For
1 ≤ i ≤ L, define ΓΨ,p[i] to be the signed permutation
for path Qi, that is ΠΨ,Qi . Given a signed permuta-

tion Γ, define orth(Γ) to be the d-vector that is the
image of the row d-vector 1d under Γ. For example, if
Π = [−2 −3 +1] then orth(Π) = (+1,−1,−1). Define
the orthant list for the pair (Ψ, p) to be the sequence
of L vectors whose ith element is orth(ΓΨ,p[i]), that is

ΦΨ,p = 〈orth(ΓΨ,p[1]), orth(ΓΨ,p[2]), . . . , orth(ΓΨ,p[L])〉
(2)

The orthant list can be computed incrementally along
with the permutation part of the code as follows.
Given the LPT code (`, Π, Φ) for a simplex SΨ,p, first
observe that the orthant list only changes for the chil-
dren if the current level is d − 1. If so, we compute
the child’s permutation Π′ from Eq. (1) and append
orth(Π′) to the current list.

LPTcode(p, (`, Π, Φ))
if (p = ∅) return (`, Π, Φ)
Express p as xq, for x ∈ {0, 1}
`← (` + 1) mod d
if (x = 1) Π ← Π ◦ Σ`
if (` = 0) Φ ← Φ + orth(Π)
return LPTcode(q, (`, Π, Φ))

The computation of the LPT code is summarized in
the procedure LPTcode. The code for the simplex
SΨ,p is computed by the call LPTcode(p, (0, Ψ, ∅)). We
may now state the main result of this section, called
the LPT Theorem, which establishes the geometric
meaning of our LPT code by relating each simplex
of the decomposition tree to its associated reference
simplex. Hebert [11] proved the analogous result for
his 3-dimensional bisection system. Let 1Td+1 denote
a (d + 1)-column vector of 1’s. The following theo-



rem makes use of the observation that, for any d-row
vector v, the matrix product 1Td+1 · v is a (d + 1)× d
vector whose rows are all equal to v, thus adding this
to a simplex matrix is equivalent to a translation by
v. The proof is given in the appendix.

Theorem 4.1 (LPT Theorem) Let SΨ,p be the sim-
plex of the decomposition tree associated with some
initial permutation Ψ and binary path p. Let (`, Π, Φ)
be the LPT code for this simplex, defined above. Then
SΨ,p is related to ∆`, the reference simplex at this level,
by the following similarity transformation:

SΨ,p =
1

2L
∆`Π + 1Td+1

L∑
i=1

1

2i
Φ[i].

where L = b |p|/dc.
We can now describe a pointerless implementation of
a simplex decomposition tree. For each simplex SΨ,p

in the tree, we create a node that is indexed by an ap-
propriate encoding of the associated LPT code. Theo-
rem 4.1 implies that the geometry of this simplex is de-
termined entirely from the LPT code, and, if desired,
it can be computed from the code in time proportional
to the code length. These objects are then stored in
any index structure that supports rapid look-ups, for
example, a hash table.

Implementation Issues: There are a number of
practical observations that can be made on how to en-
code LPT codes efficiently in low dimensional spaces.
Let D denote the maximum depth of any node in the
tree. Each of the d! permutations of Sym(d) can be en-
coded as an integer with log2 d! bits [25]. A d-element
reflection vector over {±1} can be represented as a d-
element bit string (e.g., by the mapping +1→ 0 and
−1→ 1). Thus, a signed permutation Π then can be
encoded by a pair of integers. A convenient way to
encode the vectors of the orthant list is map them
to bit strings and to store them as d separate lists,
one for each coordinate. (The advantage of this rep-
resentation will be discussed in Section 5.3.) The fi-
nal code consists of the level `, expressed with dlog2 de
bits, the permutation and reflection, represented using
dlog2(d!)e+d bits, and the orthant list, represented us-
ing d · length(Φ) bits, which is at most d bD/dc ≤ D.
The total number of bits needed to represent the code
for a simplex at depth D is D+log2(d!)+O(d). This is
close to optimal in the worst case, since there are 2Dd!
simplices at depth D in a full tree. If we assume that
the machine’s word size is Ω((D/d)+log2 d!), then the
permutation part of the code can be stored in a con-
stant number of machine words and the orthant lists
can be stored in O(d) machine words.

Also, note that for small d, the multiplication tables
for the various signed permutations (such as Σ` of
Eq. (1) and the neighbor permutations of Section 5.3
below) can be precomputed and stored in tables. This

allows very fast evaluation of permutation operations
by simple table look-up.

5. DECOMPOSITION TREE
OPERATIONS

In this section we present methods for performing use-
ful tree access operations based on manipulations of
LPT codes.

5.1 Tree Traversal

Consider a simplex SΨ,p of the tree whose LPT code is
(`, Π, Φ). Let us consider how to compute the children
and parent of this simplex in the tree. The LPT codes
of the children of this simplex can be computed in O(d)
time by applying the recursive rules used to define the
LPT code, given in Section 4. We can compute the
parent from the LPT code by inverting this process,
but to do so we need to know whether the simplex
is a 0-child, a 1-child, or the root. A root simplex
is distinguished by having an empty orthant list and
level ` = 0. Otherwise, we use the following lemma.

Lemma 5.1 Consider a nonroot simplex S of the de-
composition tree with LPT code (`, Π, Φ), and let S′ be
its nearest proper ancestor at level 0. Let Π = [πi]

d
i=1

be the signed permutation of S, let o = (oi)
d
i=1 be

the last entry of the orthant list of S′, and let `∗ =
1 + ((`− 1) mod d). Then S is a 0-child if and only if
sign(π`∗) = sign(o|π`∗ |).

This lemma can be applied to determine the LPT code
for the parent of a nonroot simplex S. Given S’s
LPT code, (`, Π, Φ), we distinguish two cases, depend-
ing on its level. If ` is nonzero, then its parent’s level is
`′ = `− 1 and otherwise its parent’s level is `′ = d− 1.
If ` is nonzero, then the orthant vector o of the lemma
is the last entry of Φ. We apply this lemma to deter-
mine whether S is a 0- or 1-child. From Eq. (1) and
Theorem 4.1 we know that, if it is a 0-child, it has the
same permutation code as its parent, and otherwise its
parent’s permutation code is Π ◦ Σ−1

`′ . Its parent has
the same orthant list. On the other hand, if ` = 0 then
o is the second to last entry of Φ. Again we apply the
lemma to determine whether S is a 0- or 1-child, and
derive its parent’s permutation code. The last entry
of S’s orthant list is removed to form the orthant list
of its parent. This can be computed in O(d) time.

5.2 Point Location and Interpolation

In this section we consider how to compute the
LPT code of the leaf simplex of the decomposition
tree that contains a given query point q = (qi)

d
i=1.

We assume that q lies in the base hypercube, that is,
−1 ≤ qi ≤ 1. If q lies on a face between two simplices,
we will choose one arbitrarily.

We begin by locating the root simplex, SΨ,∅ that con-
tains q. It is easy to see that a point q in the base



findRoot(q)

Ψ← sortDescending((q)di=1)
α0 ← (1− qψ1)/2
αd ← (1 + qψd)/2
for (0 < i < d) αi ← (qψi − qψi+1)/2
return(Ψ, α)

search(q, (`, Π), α)
if ((`, Π) is a leaf) return (`, Π)
α′ ← α
if (α` ≤ αd)

α′
` ← 2α`; α′

d ← αd − α`
return search(q, ((` + 1) mod d, Π), α′)

else
α′
d ← 2αd; α′

` ← α` − αd
return search(q, ((` + 1) mod d, Π ◦ Σ`), α

′Σ′
`)

Figure 3: The procedures findRoot and search, which are used to locate a query point q in the hierarchy. The permutation
Σ′
` is defined in Lemma 5.2 and the permutation Σ` was given in Section 4, Eq. 1.

hypercube lies in the base reference simplex, ∆0, if and
only if its coordinate vector is sorted in decreasing or-
der. It follows that determining the permutation Ψ of
the root simplex reduces to sorting the coordinates of
q in decreasing order and setting Ψ to the permuta-
tion that produces this sorted order. Let us assume
that the function sortDescending computes this per-
mutation. Letting vi denote the ith vertex of the root
simplex SΨ,∅ that contains q, the barycentric coordi-
nates of q with respect to SΨ,∅ is the unique d + 1
vector α = (αi)

d
i=0, 0 ≤ αi ≤ 1, such that

∑
i αi = 1

and q =
∑
i αivi. Because of the special structure

of ∆0, it is easy to verify that the procedure findRoot
shown in Fig. 3 computes these coordinates.

After this initialization, we recursively descend the
hierarchy until finding a leaf simplex. We use the
barycentric coordinates of q relative to the current
simplex to determine in which child it resides. Then
we generate the barycentric coordinates of q with re-
spect to this child. This is done with the aid of the
following lemma. The descent algorithm is given in
Fig. 3. To simplify the presentation, we have omitted
the orthant list processing, which is the same as in the
code block just prior to Theorem 4.1.

Lemma 5.2 Consider a nonleaf simplex SΨ,p of the
hierarchy at level ` with the associated permutation
code ΠΨ,p = [πi]

d
i=1. Suppose that q lies within this

simplex with the barycentric coordinates α = (αi)
d
i=0.

• If α` ≤ αd, then q lies in the 0-child. Let α′ be
the (d + 1)-vector that is identical α except that
α′
` = 2α` and α′

d = αd−α`. Then the barycentric
coordinate vector of q relative to this child is α′.

• Otherwise, q lies in the 1-child. Let Σ′
` be a

(d+1)-permutation that shifts the last d+1−` co-
ordinates circularly one position to the right. Let
α′ be the (d + 1)-vector that is identical to α ex-
cept that α′

d = 2αd and α′
` = α` − αd. Then the

barycentric coordinate vector of q relative to this
child is α′Σ′

`.

Given the query point q, the point location procedure
first calls findRoot to find the appropriate root simplex

Ψ of the decomposition tree and the barycentric coor-
dinates α. Then it invokes the recursive procedure
search(0, Ψ, α) to locate q within the appropriate root
simplex. Once the point has been located, we can an-
swer the interpolation query for this point. We access
the stored vector field values at each of the simplex
vertices, and then weight these values according to the
barycentric coordinates of q. The result is a piecewise
linear, continuous interpolant.

This simple sequential search makes as many mem-
ory accesses as the depth of the final leaf simplex that
contains q. A more efficient procedure in terms of
memory accesses would be to employ a doubling bi-
nary search, which computes (using only local mem-
ory) the LPT codes for the simplices at depths 0, 1,
2, 4, 8, and so on, until first finding a depth whose
simplex does not exist in the hierarchy. We then use
standard binary search to locate the exact depth of
the leaf simplex that contains q. Although the com-
putation of the LPT codes is performed sequentially
in time linear in the depth of the final simplex, the
number accesses to the simplex decomposition tree is
only logarithmic in the final depth. Thus, the running
time is O(dD), where D is the maximum depth of the
tree, and O(log D) global memory accesses are made.

5.3 Neighbors in the Simplicial Complex

As we mentioned earlier, when a simplex of the de-
composition tree is bisected, it is necessary to bisect
some of its neighbors in order to guarantee that the
final subdivision is compatible. Thus, it is necessary
to compute neighbors within the complex. Two sim-
plices are neighbors if they share a common (d − 1)-
dimensional face. In addition to this major need, com-
puting facet neighbors of a simplex efficiently is of
great interest for many applications that require mov-
ing along adjacent simplices, such as direct volume
rendering and isosurface extraction techniques.

Consider a simplex S in the complex defined by the
decomposition tree. For 0 ≤ i ≤ d, let vi denote its
ith vertex. Exactly one (d − 1)-face of S does not
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Γnsw,`Γrgt,`Γneg,1 Γlft,` Γswp,i

` ` d i i+1 d`1

Figure 4: Permutation types. (The circle with a minus sign indicates that the element is negated.)

if (S is a 0-child) : N (0)(S) : Π(0) = Π ◦ Γneg,1

N (i)(S) : (0 < i < d) Π(i) = Π ◦ Γswp,i

N (d)(S) : Π(d) = Π ◦ Γrgt,`−

if (S is a 1-child) : N (0)(S) : Π(0) = Π ◦ Γneg,1

N (`∗)(S) : Π(`∗) = Π ◦ Γlft,`−

N (i)(S) : (0 < i < d, i 6= `∗) Π(i) = Π ◦ Γswp,i

N (d)(S) : (d 6= `∗) Π(d) = Π ◦ Γnsw,`

Figure 5: Permutation codes for neighboring simplices.

contain vi. If this face is not on the boundary of the
base hypercube, its neighbor exists in the complex.
If so, we define N (i)(S) to be the same depth neigh-
boring simplex to S lying on the opposite side of this
face. Let (`, Π, Φ) denote the LPT code for S and let
(`(i), Π(i), Φ(i)) denote the LPT code for N (i)(S). We
present rules here for computing LPT codes of these
neighbors. The proof of their correctness is based on
a straightforward but lengthy induction argument. A
sketch of the proof is presented in the appendix. The
rules compute the LPT code for the neighbor simplex
at the same depth as S, and hence `(i) = `. Of course,
this simplex need not be in the decomposition tree be-
cause its parent may not yet have been bisected. In
fact, in a compatible subdivision, a (d− 1)-face neigh-
bor of S could also appear at one level higher or one
level lower than S. We will also show how to compute
the LPT codes of those neighbors.

Neighbor Permutation Code: Each neighbor’s
permutation code is determined by applying one of a
set of special signed permutations to Π. The permu-
tation depends on whether S is a 0-child or a 1-child,
which can be determined using the test given in Sec-
tion 5.1. These permutations are illustrated in Fig. 4,
and include the following: Γneg,1, negates the first el-
ement, Γrgt,` (resp., Γlft,`), shifts the last d − ` ele-
ments cyclically one position to the right (resp., left)
and negates the element that was wrapped around,
Γswp,i, swaps elements i and i + 1, and Γnsw,`, swaps
and negates elements ` and d. The neighbor rules are
given in Fig. 5. A number of the rules involve the
parent’s level, and so to condense notation, we define
`− = (` − 1) mod d and `∗ = `− + 1. Observe that
`− = ` − 1 and `∗ = `, except when ` = 0, in which
case they are larger by d. These can be computed in
O(d) time, and in fact in O(1) time if permutations
are encoded in look-up tables.

Neighbor Orthant: If ` 6= 0 or 1 ≤ i < d, N (i)(S),
is in the same final orthant as S, and so Φ(i) = Φ. If

` = 0, N (d) is in a different orthant than S, but, N (d)

is the sibling of S in this case. Thus, Φ and Φ(d) differ
only in their last element, which is orth(Π(d)). Thus
the orthant list can be updated in either O(1) or O(d)
time in these cases.

The only remaining case is Φ(0). This case is the most
complex because the final enclosing quadtree box of
N (0)(S) is disjoint from S’s final quadtree box. Fur-
ther, it may be arbitrarily far away, in the sense that
the least common ancestor of the two nodes may be
the root of the tree. In this case, to compute Φ(0), we
can apply known methods for computing neighbors in
linear quadtrees [15], which provide the answer to the
following problem: Given the path from the root to
an orthant A (in our representation this path corre-
sponds to the orthant list), and a direction defined as
a 2-tuple (D, Xi) where Xi is the ith coordinate axis,
and D ∈ {−, +} represents the direction of Xi, find
the path to the neighbor orthant of equal size located
in the given direction with respect to A. Thus, in or-
der to compute Φ(0), which represents the path from
the root to the final orthant of N (0)(S), all we need is
to determine which direction N (0)(S) is located with
respect to S. Consider the Π and Π(0) corresponding
to S and N (0)(S) respectively. By the given neigh-
bor rules, these two permutation-reflection codes differ
only in the sign of their first element. This is the sign
corresponding to the X|π1| axis, given that Π = [πi]

d
1

is the code for S. The sign of π1 determines in which
direction of X|π1| axis S resides in its final orthant.

And so, the neighbor N (0)(S) is also in that direction.
Thus, the axis component of the direction is X|π1|, and
the sign component of the direction is sign(π1).

Implementation Issues: We omit the details, due
to space limitations, except to note that the opera-
tion can be implemented very rapidly through a sim-
ple trick with bit manipulations. The neighbor com-
putation [15] essentially involves an operation, which



is applied to a bit string that consists of the ith coor-
dinate of each entry of the orthant list. Recall that the
orthant list is stored as d separate bit strings, one per
coordinate, and packed into machine words as binary
numbers. The key operation needed for the neighbor
computation involves complementing a maximal trail-
ing sequence of matching bits. For example, given a
bit string of the form w10k, for w ∈ {0, 1}∗, the de-
sired result is w01k (and vice versa). By packing these
bits into a single word, we can compute this function
with a single arithmetic operation by subtracting (or
adding) 1 from the resulting binary number. Assum-
ing that the machine’s word size is Ω(D/d), where D
is the maximum depth of any simplex, the orthant list
for the neighbor can be computed in O(1) time.

Neighbors at different depths: Above rules pro-
vide the LPT code for the same depth neighbors. How-
ever, in a compatible subdivision, a neighbor could
possibly appear one level closer or one level further
from the root, that is, some neighbors of a simplex Sp
at depth |p|, could appear at depths |p| − 1 or |p|+ 1.
We can categorize the neighbors of a simplex into two
groups: neighbors that share the edge-to-be-bisected,
and neighbors that do not. Maubach already proved
that a neighbor sharing the edge-to-be-bisected is ei-
ther at depth |p| or at depth |p|−1, and that a neighbor
at depth |p|− 1 is the parent of the same depth neigh-
bor which did not come into existence yet. Hence, to
compute the LPT code for a neighbor at depth |p|−1,
we first compute the LPT code for the same depth
neighbor by the above rules, and if the same depth
neighbor does not exist in the tree, we compute its
parent’s LPT code as described in Section 5.

In addition, any (d-1)-face neighbor of Sp which does
not share the edge-to-be-bisected could possibly be
at depth |p| + 1. Specifically, same depth neighbors
N (`)(Sp) and N (d)(Sp), might have been bisected with-
out triggering bisection of Sp, and so, one of their chil-
dren will now share a face with Sp. Moreover, the child
of N (`)(Sp) or N (d)(Sp) that shares a face with Sp, is
the same depth neighbor of one of the children of Sp.
So, we can compute a neighbor at depth |p|+1 by com-
puting the appropriate same depth neighbor of one of
the children of Sp. Formally,

if(N (`)(Sp) is a bisected simplex)

N (`)(Sp0) is the `th neighbor of Sp.

if(N (d)(Sp) is a bisected simplex)

N (`)(Sp1) is the dth neighbor of Sp.

It can be easily proven that these neighbors cannot
exist at depths higher than |p|+ 1.

6. CONCLUSION

We have presented a representation of hierarchical reg-
ular simplicial meshes based on Maubach’s [6] bisec-

tion algorithm. Unlike Maubach’s approach, which re-
quires the use of recursion or an explicit tree structure,
our representation is pointerless, that is, the simplices
of the mesh are uniquely identified through a location
code, called the LPT code. We have shown how to use
this code to traverse the hierarchy, compute neighbors,
and to answer point location and interpolation queries.
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APPENDIX

Due to space limitations, we have omitted some of the
cases in the following proofs and proofs of the lemmas.
For complete proofs, please refer to the full paper [26].

Proof of Theorem 4.1

We define the following functions that act on a signed
permutation Π = [πi]

d
i=1. The first, perm(Π), extracts

the permutation part of Π, the second, refl(Π), ex-
tracts the (unpermuted) reflection part as a vector in
{±1}d. More formally,

perm(Π) = [ |πi| ]di=1 refl(Π) = (sign(πi))
d
i=1

Note also that orth(Π) = refl(Π)perm(Π). The fol-
lowing is an easy consequence.

Lemma 6.1 Let Π be a signed permutation. Then
Π = diag(refl(Π))perm(Π) = perm(Π)diag(orth(Π)).

Inductive Hypothesis: Let SΨ,p denote any sim-
plex. Let ` = |p| mod d and let ∆` be the reference
simplex for this level. Then SΨ,p is similar to ∆`, and
in particular

SΨ,p =
1

2L
∆`ΠΨ,p + 1Td+1

L∑
i=1

1

2i
ΦΨ,p[i].

where L = b|p|/dc, and the signed permutation ΠΨ,p

and orthant list ΦΨ,p[i] are defined in Section 4.

Induction Basis: The hypothesis holds for all root
simplices, SΨ,∅, where L = b|p|/dc = 0, and ` = 0,

SΨ,∅ = 1
20 ∆0ΠΨ,∅ + 1Td+1

∑0
i=1

1
2i ΦΨ,∅[i]

= ∆0ΠΨ,∅ (holds by definition).

Induction Step: Assume that the inductive hy-
pothesis holds for SΨ,p, at level ` = |p| mod d. We will
show that, it holds for the 0- and 1-children of SΨ,p.

We will make use of the following equalities and lem-
mas. We can define Sp0 = B`,0Sp and Sp1 = B`,1Sp,
where B`,0 and B`,1 are (d + 1) × (d + 1) matrices
whose `th row (starting from row 0) has the value 1/2
in columns ` and d (starting from column 0), and all
other rows are unit vectors. Thus, ∆`+1 = B`,0∆`.

Lemma 6.2 Given the reference simplex ∆`, 0 ≤ ` <
d,

B`,0∆` = B`,1∆`Σ
−1
` ,

where Σ` is as defined in Section 4.

Lemma 6.3 Given the reference simplex ∆`, 0 ≤ ` <
d, and a signed permutation ΠΨ,p,

B`,1∆`ΠΨ,p = ∆`+1ΠΨ,p1

Let T = 1Td+1

∑L
i=1

1
2i ΦΨ,p[i]. Note that, T =

1Td+1

∑L
i=1

1
2i ΦΨ,p0[i] = 1Td+1

∑L
i=1

1
2i ΦΨ,p1[i] as well.

Also, note that all rows of T are equal to each other.
For such a matrix T , the following equalities hold,

B`,0T = T, B`,1T = T.

In the induction, there are two cases depending on `:

1. 0 ≤ ` < d− 1

(a) First, consider SΨ,p0. By definition, ΠΨ,p0 =
ΠΨ,p.

SΨ,p0 = B`,0SΨ,p

= B`,0(
1

2L ∆`ΠΨ,p + T ) (ind. hyp.)

= 1
2L ∆`+1ΠΨ,p + T

= 1
2L ∆`+1ΠΨ,p0 + T.

This completes the induction for SΨ,p0, since
b|p0|/dc = L for 0 ≤ ` < d− 1.



(b) Now, consider SΨ,p1.

SΨ,p1 = B`,1SΨ,p

= B`,1(
1

2L ∆`ΠΨ,p + T ) (ind. hyp.)

= 1
2L ∆`+1ΠΨ,p1 + T. (Lemma 6.3)

This completes the induction for SΨ,p1, since
b|p1|/dc = L for 0 ≤ ` < d− 1.

2. ` = d− 1, the children of SΨ,p will be at level 0.

(a) First, consider SΨ,p0. By definition, ΠΨ,p0 =
ΠΨ,p.

SΨ,p0 = Bd−1,0SΨ,p

= Bd−1,0(
1

2L ∆d−1ΠΨ,p + 1Td+1

∑L
i=1

1
2i ΦΨ,p[i])

= 1
2L ∆dΠΨ,p + 1Td+1

∑L
i=1

1
2i ΦΨ,p[i]

= 1
2L ∆dΠΨ,p0 + 1Td+1

∑L
i=1

1
2i ΦΨ,p0[i]

= 1
2L ∆dΠΨ,p0 + 1Td+1

∑L+1
i=1

1
2i ΦΨ,p0[i]

− 1
2L+1 1Td+1ΦΨ,p0[L + 1]

Since ∆d =
∆0+[1](d+1)×d

2
where [1](d+1)×d is a

matrix of 1’s and ΦΨ,p0[L + 1] = orth(ΠΨ,p0),
SΨ,p0 is equal to

1
2L

(∆0+[1](d+1)×d)

2
ΠΨ,p0 + 1Td+1

∑L+1
i=1

1
2i ΦΨ,p0[i]

− 1
2L+1 1Td+1orth(ΠΨ,p0)

= 1
2L+1 ∆0ΠΨ,p0 + 1Td+1

∑L+1
i=1

1
2i ΦΨ,p0[i]

+ 1
2L+1 ([1](d+1)×dΠΨ,p0 − 1Td+1orth(ΠΨ,p0))

By Lemma 6.1,

1Td+1orth(ΠΨ,p0) = 1Td+1refl(ΠΨ,p0)perm(ΠΨ,p0)

= [1](d+1)×ddiag(refl(ΠΨ,p0))perm(ΠΨ,p0)

= [1](d+1)×dΠΨ,p0.

We see that, the third term above is 0, yielding

SΨ,p0=
1

2L+1 ∆0ΠΨ,p0 + 1Td+1

∑L+1
i=1

1
2i ΦΨ,p0[i]

This completes the induction for SΨ,p0, since
b|p0|/dc = L + 1 for ` = d− 1.

(b) Case of SΨ,p1 can be similarly proven applying
the same derivations as in case 1(b) and 2(a).

Correctness of the Neighbor Rules

The following notation will be used throughout the
proof. S denotes any simplex. S(i) = N (i)(S), i.e. the

ith neighbor of S. Π and Π(i) denote the signed permu-
tation code associated with S and S(i) respectively. S0

and S1 denote the 0- and 1-children of S, respectively.

S
(i)
0 and S

(i)
1 denote the 0- and 1-children of S(i), re-

spectively. Π0 and Π1 denote the signed permutation

code associated with S0 and S1, respectively. Π
(i)
0 and

Π
(i)
1 denote the signed permutation code associated

with S
(i)
0 and S

(i)
1 , respectively. (S0)

(i) denote the ith

neighbor of S0. (Π0)
(i) denotes the code for (S0)

(i).

(S1)
(i) denote the ith neighbor of S1. (Π1)

(i) denotes

the code for (S1)
(i). m and m′ are used to denote the

new vertex generated by bisection. u is used for the
vertex that differs in the neighbor simplex.

Inductive Hypothesis: Let S = [v0 . . .v` . . .vd]
T

be a simplex at level ` = |p| mod d. Let `− = (` −
1) mod d and `∗ = `− + 1.

if (S is a 0-child) :

S(0) : [u v1...vd]
T
, Π(0) = Π ◦ Γneg,1

S(i) : [v0...vi−1 u vi+1...vd]
T
, Π(i) = Π ◦ Γswp,i

(0 < i < d)

S(d) : [v0...v`−u v`∗ ...vd−1]
T
, Π(d) = Π ◦ Γrgt,`−

if (S is a 1-child) :

S(0) : [u v1...vd]
T
, Π(0) = Π ◦ Γneg,1

S(`∗) :
[
v0...v`−v`−+2...vd u

]T
,

Π(`∗) = Π ◦ Γlft,`−

S(i) : [v0...vi−1 u vi+1...vd]
T
, Π(i) = Π ◦ Γswp,i

(0 < i < d, i 6= `∗)

S(d) : [v0...vd−1 u]T, (d 6= `∗), Π(d) = Π ◦ Γnsw,`

Induction Basis: Neighbor rules hold for the d!
root simplices. Note that the level of a root simplex is
0, and the rules are the same whether the simplex is
a 0-child, or a 1-child. Let S denote any root simplex,
with LPT code Π = [π1 . . . πi πi+1 . . . πd].

For all root simplices, S(0) = ∅, and S(d) = ∅, that is,
the 0th and the dth neighbors do not exist, since they
are outside the reference hypercube. Other neighbors,
S(i), 0 < i < d, should be obtainable by swaps. Recall
that the base simplex S∅ and any root simplex S could
be represented respectively as,

S∅ = [y1 . . .yd], yi =




yi,0
. . .
yi,i−1

yi,i
. . .
yi,d




=




−1
. . .
−1

1
. . .
1




S = [y′
1 . . .y′

d], y′
j = yi iff πi = j

If πi = j, and πi+1 = k, then y′
j = yi and y′

k = yi+1.

Π = [π1 . . . πi−1 j k πi+2 . . . πd]

Note that swapping columns y′
j and y′

k of S, will give

us another valid root simplex, S′ which differs from



S only in the ith row, that is the ith vertex. So, S′

is basically the ith neighbor of S, that is S′ = S(i).
Let Π′ denote the signed permutation for S′. Then,
Π′ = [π1 . . . πi−1 k j πi+2 . . . πd]. And so,

Π(i) = Π′ = Π ◦ Γswp,i.

Induction Step: Let S be a simplex at level `− such
that the inductive hypothesis holds. We will show that
the inductive hypothesis holds for the two children of
S. (Similar analysis can be used for the omitted cases.)

1. First, consider the 0-child of S, that is S0. Let `
denote the level of S0. Note that `− = (`− 1) mod d.
Let `∗ = `−+1. Letting i denote the neighbor number,
there are multiple cases to be distinguished.

(a) i = 0

If 0 < `− ≤ d− 1,

S=[v0 v1 . . .v`− . . .vd]
T

S(0)=[ u v1 . . .v`− . . .vd]
T

S0=[v0 v1 . . .v`−−1 m v`∗ . . .vd]
T

S
(0)
0 =[ u v1 . . .v`−−1 m v`∗ . . .vd]

T

Else if `− = 0

S=[v0 v1 . . .vd]
T , S0=[m v1 . . .vd]

T

S(0)=[ u v1 . . .vd]
T , S

(0)
0 =[m′ v1 . . .vd]

T

In either case, (S0)
(0) = S

(0)
0 . Thus, (Π0)

(0) =

Π
(0)
0 = Π(0) = Π ◦ Γneg,1 = Π0 ◦ Γneg,1.

(b) i = d

By definition of bisection rules, dth neighbor of
S0 is its sibling, that is S1, and

(Π0)
(d) = Π1 = Π0 ◦ Γrgt,`− .

(c) 0 < i < `−

S=[v0..vi−1 vi vi+1 . . .v`−−1 v`− . . .vd]
T

S(i)=[v0..vi−1 u vi+1 . . .v`−−1 v`− . . .vd]
T

S0=[v0..vi−1 vi vi+1 . . .v`−−1 m v`∗ . . .vd]
T

S
(i)
0 =[v0..vi−1 u vi+1 . . .v`−−1 m v`∗ . . .vd]

T

Then, (S0)
(i) = S

(i)
0 . Thus, (Π0)

(i) = Π
(i)
0 =

Π(i) = Π ◦ Γswp,i = Π0 ◦ Γswp,i.

(d) i = `−, `− 6= 0

i. If S is a 0-child, (omitted, analogous to 1(c)).
ii. If S is a 1-child,

S=[v0 . . .v`−−1 v`− v`∗ . . .vd]
T

S(`−)=[v0 . . .v`−−1 v`∗ . . . . . .vd u]T

S0=[v0 . . .v`−−1 m v`∗ . . .vd]
T

S
(`−)
1 =[v0 . . .v`−−1 m′ v`∗ . . .vd]

T

Then, (S0)
(`−) = S

(`−)
1 .

Π0 = Π = [π1 . . . πd]

Π(`−) = [π1 . . . π`−−1 π`∗ . . . πd −π`− ]

Π
(`−)
1 = [π1 . . . π`−−1 π`∗ π`− π`∗+1 . . . πd]

Thus, (Π0)
(`−) = Π

(`−)
1 = Π0 ◦ Γswp,`− .

(e) `− < i < d, (omitted, analogous to 1(c)).

2. Next, consider the 1-child of S, that is S1. Let `
denote the level of S1. Note that `− = (`− 1) mod d.
Let `∗ = `−+1. Letting i denote the neighbor number,

(a) i = 0

i. `− = 0

S=[v0 v1 . . .vd−1 vd]
T

S(d)=[v0 v1 . . .vd−1 u]T

S1=[m v0 . . .vd−1]
T

S
(d)
1 =[m′ v0 . . .vd−1]

T

Then, (S1)
(0) = S

(d)
1 .

Π = [π1 . . . πd]
Π1 = [−πd π1 . . . πd−1]

Π(d) = [π1 . . . πd−1 −πd]

Π
(d)
1 = [πd π1 . . . πd−1]

Thus, (Π1)
(0) = Π

(d)
1 = Π1 ◦ Γneg,1.

ii. `− 6= 0, (omitted).

(b) 0 < i < `−, (omitted).

(c) i = `−

i. If S is a 0-child, (omitted).
ii. If S is a 1-child,

S=[v0 . . .v`−−1 v`− . . .vd−1 vd]
T

S(d)=[v0 . . .v`−−1 v`− . . .vd−1 u]T

S1=[v0 . . .v`−−1 m v`− . . .vd−1]
T

S
(d)
1 =[v0 . . .v`−−1 m′ v`− . . .vd−1]

T

Then, (S1)
(`−) = S

(d)
1 .

Π = [π1 . . . πd],
Π1 = [π1 . . . π`− −πd π`∗ . . . πd−1]

Π(d) = [π1 . . . π`−−1 −πd π`∗ . . . πd−1 −π`− ]

Π
(d)
1 = [π1 . . . π`−−1 −πd π`− . . . πd−1]

And so, (Π1)
(`−) = Π

(d)
1 = Π1 ◦ Γswp,`− .

(d) i = `∗, (omitted, analogous to 1(b)).

(e) `∗ < i ≤ d, ` 6= 0

i. `∗ < i < d, ` 6= 0, (omitted, analogous to
2(e)ii)
ii. i = d, ` 6= 0,

S=[v0 . . .v`− . . .vd−2 vd−1 vd]
T

S(d−1)=[v0 . . .v`− . . .vd−2 u vd]
T

S1=[v0 . . .v`−−1 m v`− . . .vd−2 vd−1]
T

S
(d−1)
1 =[v0 . . .v`−−1 m v`− . . .vd−2 u]T

Then, (S1)
(d) = S

(d−1)
1 .

Π = [π1 . . . π`− . . . πd−1 πd]
Π1 = [π1 . . . π`− −πd π`∗ . . . πd−1]

Π(d−1) = [π1 . . . πd−2 πd πd−1]

Π
(d−1)
1 = [π1 . . . π`− −πd−1 π`∗ . . . πd−2 πd]

Thus, (Π1)
(d) = Π

(d−1)
1 = Π1 ◦ Γnsw,`∗ = Π1 ◦

Γnsw,`.


